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Abstract Random Euclidean addition chain genera-

tion has proven to be an efficient low memory and SPA

secure alternative to standard ECC scalar multiplica-

tion methods in the context of fixed base point [21].

In this work, we show how to generalize this method

to random point scalar multiplication on elliptic curves

with an efficiently computable endomorphism. In order

to do so we generalize results from [21] on the relation of

random Euclidean chains generation and elliptic curve

point distribution obtained from those chains. We pro-

pose a software implementation of our method on vari-

ous platforms to illustrate the impact of our approach.

For that matter, we provide a comprehensive study of

the practical computational cost of the modular mul-

tiplication when using Java and C standard libraries

developed for the arithmetic over large integers.

Keywords Addition chains · Co-Z arithmetic · scalar

multiplication · GLV · Android

1 Introduction

Let p be a prime number. An elliptic curve in short

Weierstrass form over a finite prime field Fp is defined

by E(Fp) = {(x, y) ∈ Fp×Fp|y2 = x3+ax+b}∪O, with

Y. Dosso, N. Méloni, P. Véron
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Université de Toulon, France
E-mail: yssouffangan@gmail.com
E-mail: meloni@univ-tln.fr
E-mail: veron@univ-tln.fr

F. Herbaut
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a, b ∈ Fp satisfying 4a3 + 27b2 6= 0 and O being called

the point at infinity. The set E(Fp) is an abelian group

with an efficiently computable group law. The main op-

eration in elliptic curve cryptography is scalar multipli-

cation, that is the computation of kP , where P is a

prime order point on a curve and k is an integer. Opti-

mizing this operation is directly linked to the problem of

finding a short addition chain computing the integer k.

The most common way to find such chains relies on the

classical double-and-add algorithm and its many vari-

ants and improvements [5,34,29,30]. Another approach

consists in using a rather different family of chains, the

Euclidean Addition Chains (EAC). If C = (c1, . . . , cl)

is an EAC computing k, one can compute kP in l dif-

ferential point additions, that is additions for which the

difference of the two summands is already known. On

elliptic curves in short Weierstrass form it provides an

efficient, low memory and simple side channel attack

(SSCA) resistant method to perform scalar multiplica-

tion when combined with Co-Z arithmetic, as long as

one is capable of finding a chain of small length [28].

However, given a large integer k, it appears to be quite

time consuming to find suitable chains. A natural way

to bypass that issue is to randomly generate a small

EAC and to consider the corresponding integer. How-

ever, in that case, one does not fully control the distri-

bution of the corresponding points. To obtain a proven

security of n bits, that is to say to be able to guaran-

tee that one can generate 2n different chains computing

2n different points, one can work with chains of length

n but has to pre-compute the pair (Fn+2P, Fn+3P ),

where {Fn} is the Fibonacci sequence, and work on

larger fields than standard methods. Those constraints

limit the use of this approach to the case of fixed base

point scalar multiplication [21].
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In this paper, we propose to generalize that previous

work to the case of random base point scalar multipli-

cation on elliptic curves with an efficiently computable

endomorphism. Moreover, we want to derive from this

generalization a practical implementation which fits the

following constraints.

SSCA resistance: we need to design a regular and

constant-time algorithm to be protected against simple

side channel attacks.

Cache timing attack resistance: the execution flow

(sequence of instructions) must be independent from

the key used in order to avoid recent cache instructions

attacks [1]. Data loaded into cache must also be in-

dependent from the key in order to avoid data cache

attacks [3].

Low memory: we want to minimize the number of

registers needed to store the coordinates of the various

points involved in the computation of kP . For resource

constrained devices (like IoT devices), it is of utmost

importance to design a low memory algorithm with lit-

tle impact on the performances of the scalar multipli-

cation operation.

Non specific libraries dependencies: in order to

manage arithmetic over large integers, we only con-

sider general purpose multi-precision libraries with long

term support (BigInteger library for Java-based plat-

forms and GNU Multiple Precision library for other

platforms).

Curves with one efficient endomorphism: in or-

der to design a efficient algorithm, we consider curves

with one endomorphism. Taking into account our mem-

ory usage constraint, we focus on curves with exactly

one endomorphism. Indeed, the use of extra endomor-

phisms leads to extra precomputation stages, and so to

extra memory usage. As an example, a secure imple-

mentation of a scalar multiplication algorithm using a

curve with one endomorphism needs to precompute two

points. For a curve, with two endomorphisms, the same

implementation needs eight points [12].

Curves over Fp: to be compliant with actual elliptic

curve cryptography standards, we focus on the case of

an elliptic curve defined over Fp. Moreover, to be more

resource friendly, we do not want to have to deal both

with arithmetic modulo p and arithmetic modulo p2.

In the sequel, we first recall the necessary background

on EAC, Co-Z arithmetic and elliptic curves with fast

endomorphism (Section 2). Then we generalize the re-

sults from [21] on the distribution of integers computed

by an EAC starting from any pair of points (aP, bP )

when P is fixed (Corollary 1). Finally we consider the

case of scalar multiplication with a random base point

on curves with a fast endomorphism φ (Proposition 4).

We show that under some assumptions we can guar-

antee a given security when starting from a pair of

points (P, φ(P )). We derive from those results a new

scalar multiplication scheme on curves with a fast endo-

morphism (Section 4). The complexity analysis of this

scheme shows that it can be competitive with state of

the art methods depending on the relative costs of mod-

ular multiplication on fields of various sizes. To illus-

trate our point, we propose software implementations

on various platforms using standard libraries for arith-

metic over large integers. We discuss the efficiency of

our method from a speed and memory consumption

point of view (Section 5, 6, 7 and 8).

2 Background on ECC scalar multiplication

2.1 Curve with efficient endomorphism

In 2001, Gallant, Lambert and Vanstone introduced a

new approach to speed up scalar multiplication on ellip-

tic curves with an efficiently computable endomorphism

[15], the so called GLV method. Let E be an elliptic

curve over Fp such that #E(Fp) = N ×h, where N is a

large prime and h a small co-factor (i.e. 1, 2 or 4). Let

φ be a non trivial endomorphism. Then there exists

λ such that for all points P of order N,φ(P ) = λP .

Now let us consider a scalar k ∈ [1, N − 1]. It has

been proven that one can always find k1, k2 such that

k ≡ k1 + k2λ mod N and max{|k1|, |k2|} ≤ c
√
N for

some computable constant c [11]. On curves with such

an endomorphism, kP can be computed by perform-

ing a multi-scalar multiplication saving half the point

doublings in exchange of a few point additions. The

standard method consists of storing P , φ(P ), P +φ(P )

and P − φ(P ) (in addition of the current point) but

is vulnerable to simple side channel attack. To prevent

such attacks, the most recent implementations use a

combination of Least Significant Bit set representation

and sign alignment [12]. It has the advantages to make

the scalar multiplication regular (one doubling and one

addition per scalar bit) and to reduce the storage re-

quirement as only the points P and P + φ(P ) need to

be stored. The GLV method has later been extended

to a larger set of curves defined over Fp2 [14,32,19,27]

which are endowed by more than one endomorphism. In

this case additional performance gains can be achieved,

whereas it implies the need of more memory.

2.2 Co-Z arithmetic on elliptic curves

Fast elliptic curve computations has become an impor-

tant research area over the past years. Many formulas,
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coordinate systems or curve shapes have been proposed

in order to implement the associated group law. For a

comprehensive overview, one can refer to [8,20]. The

traditional approach is to consider curves in Jacobian

coordinates, a point on such a curve is represented as

a triple (X : Y : Z) or any triple (α2X : α3Y : αZ),

with α ∈ F∗p. In that case, the formulae given in [28]

enable to compute the sum of two points, P and Q,

sharing the same Z-coordinate, lowering the computa-

tional cost from 11M+5S for a standard point addition

to 5M+2S. At the same cost one obtains coordinates of

a point P̃ such that :

– P +Q and P̃ share the same Z-coordinate,

– P and P̃ are in the same equivalent co-set.

This operation is sometimes called ZADD, or ZADDU

([16,18]) to say ZADD with Update. Several works have

used those formulae to propose efficient and secure sca-

lar multiplication schemes: one can see [23,2,21] for

right-to-left algorithms and [26] for left-to-right appli-

cations.

2.3 Euclidean addition chains

Given an ordered pair of points (P,Q) sharing the same

Z-coordinate, one can compute, using the ZADD oper-

ation, either (Q,P + Q) or (P, P + Q) with the same

Z-coordinate. Following notations from [21], the first

computation will be called a big step (denoted by 0)

and the second one will be called a small step (denoted

by 1). For instance, starting from P and 2P (sharing

the same Z-coordinate), one can compute (P, 3P ) or

(2P, 3P ). Then, one can obtain (P, 4P ) or (3P, 4P ) from

(P, 3P ), and (2P, 5P ) or (3P, 5P ) from (2P, 3P ), and so

on. One can thus perform a whole scalar multiplication

using Algorithm 1 and the ZADD operation (see Defi-

nition 1 below for the definition of χ(c)).

Definition 1

. An Euclidean addition chain (or EAC) of length s

is a finite sequence (ci)i=1...s of elements of {0, 1}.
. We will denote the set of EAC byM and the set of

EAC of length s by Ms.

. To such a sequence we associate (vi, ui)i=0..s a se-

quence of elements of N2 defined as follows:

– (v0, u0) = (1, 2),

– ∀i ∈ J1, sK, (vi, ui) = (vi−1, vi−1+ui−1) if ci = 1

(small step),

– ∀i ∈ J1, sK, (vi, ui) = (ui−1, vi−1+ui−1) if ci = 0

(big step).

. We will say that the sequence or the EAC (ci)i=1...s

computes the integer vs + us and the pair (vs, us).

If c = (ci)i=1...s we will denote the integer vs + us
by χ(c), and (vs, us) by ψ(c).

Algorithm 1 EAC Point Mul(c: an addition chain of

length n)

Require: P and 2P

Ensure: Q = χ(c)P

1: (U1, U2)← (P, 2P )

2: for i = 1 . . . length(c) do

3: if ci = 0 then

4: (U1, U2) ← ZADD(U2, U1) [it corresponds

to (U2, U1 + U2)]

5: else

6: (U1, U2) ← ZADD(U1, U2) [it corresponds

to (U1, U1 + U2)]

7: end if

8: end for

9: return Q = U1 + U2

We will often denote the sequence (c1, ..., cs) by

c1c2 . . . cs for convenience. Let r and s be two integers,

we will denote by cc′ the element of Mr+s obtained

from the concatenation of c ∈ Mr and c′ ∈ Ms, so

that, for n > 0, cn is a word of Mnr.

Example 1 Let us consider the EAC c = 00011 of M5.

It is related to the following sequence of ordered pairs of

integers: (1, 2) → (2, 3) → (3, 5) → (5, 8) → (5, 13) →
(5, 18). So it computes the integer χ(c) = 23, and the

couple ψ(c) = (5, 18). Note that χ(00011) = χ(11000)

= 23, so χ is not injective. Actually, the function χ, even

restricted to some Ms for s ∈ N∗, is never injective as

we can prove that for all c ∈Ms we have χ(c1 . . . cs) =

χ(cs . . . c1).

Small and big steps have an easy interpretation in

terms of linear algebra.

Definition 2 Let S0 and S1 be the matrices corre-

sponding to the linear maps (v, u) 7→ (u, u + v) (big

step) and (v, u) 7→ (v, u+ v) (small step), namely

S0 =
(

0 1
1 1

)
and S1 =

(
1 1
0 1

)
.

For c = (c1, . . . , cs) ∈Ms, we have the equalities:

ψ(c) = (1, 2)

s∏
i=1

Sci ,

and

χ(c) = (1, 2)

s∏
i=1

Sci
(
1
1

)
.

A remarkable case is that of the EAC involving big

steps only. It corresponds to the sequence of pairs of

consecutive Fibonacci numbers Fn defined by F0 = 0,

F1 = 1 and ∀n ∈ N, Fn+2 = Fn + Fn+1. Indeed,
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Sn
0 =

(
Fn−1 Fn

Fn Fn+1

)
, ψ(0n) = (Fn+2, Fn+3) and χ(0n) =

Fn+4.

There are no known regular and efficient methods

to find short EAC computing a fixed integer k. This

is the reason why it was suggested in [21] to randomly

generate them from well fitted subsets S, such that the

restriction of χ to S be injective. For example, Propo-

sition 3 in [21] states that for (c, c′) ∈M2
n, the equality

χ(0nc) = χ(0nc′) implies c = c′. In other words, start-

ing from (v0, u0) = (Fn+2, Fn+3) (instead of (1, 2)), one

obtains 2n different integers when computing χ(c) for

all c ∈Mn.

3 Euclidean addition chains computing

different points

Definition 3 Let (a, b) ∈ N2, s ∈ N∗ and c ∈ Ms. We

define:

ψa,b(c) = (a, b)

s∏
i=1

Sci ,

and

χa,b(c) = (a, b)

s∏
i=1

Sci
(
1
1

)
.

The case (a, b) = (1, 2) corresponds to Definition 1

as for all c ∈Ms we have ψ1,2(c) = ψ(c) and χ1,2(c) =

χ(c). Notice that for c ∈ Ms, the integer χa,b(c) is the

integer computed as the sum of the two components of

the vector obtained from the EAC c when starting from

(a, b). In other words, χa,b(c).P is the point obtained

when applying Algorithm 1 starting from (aP, bP ) rather

than from (P, 2P ). We will need the following Propo-

sition for the two injectivity results presented in this

note.

Proposition 1 Let s ∈ N∗. The map µ : Ms → N2

defined by µ(c) =
∏s
i=1 Sci

(
1
1

)
is injective.

Proof. It is sufficient to prove that µ(c) = µ(c′) im-

plies c1 = c′1. Indeed, one could thus conclude left-

multiplying by S−1c1 and using induction. To prove this

claim, first notice that for all c ∈Ms both components

of the vector µ(c) are positive. Then remark that for

any couple of integers (x, y) we have S0

( x
y

)
=
( y
x+y

)
and S1

( x
y

)
=
(
x+y
y

)
. So, if µ(c) =

( α
β

)
, we have c1 = 0

if and only if β > α.

Proposition 2 Let n, a and b be three positive in-

tegers such that a and b are co-prime and such that

a > Fn+2 or b > Fn+2. Then, for all (c, c′) ∈ M2
n we

have χa,b(c) = χa,b(c
′) if and only if c = c′.

To prove this proposition we will make use of the

following lemma which follows by an easy induction.

Lemma 1 Let n be a non-negative integer, c ∈ Mn

and µ(c) =
( x
y

)
. Then(

x ≤ Fn+2 and y ≤ Fn+1

)
or
(
x ≤ Fn+1 and y ≤ Fn+2

)
.

As Sn0
(
1
1

)
=
( Fn+1

Fn+2

)
and S1S

n−1
0

(
1
1

)
=
( Fn+2

Fn+1

)
the

bound is sharp.

Proof of Proposition 2. Let (c, c′) ∈ M2
n such that

χa,b(c) = χa,b(c
′). By definition,

χa,b(c) = (a, b)µ(c) and χa,b(c
′) = (a, b)µ(c′). (1)

Let us set
( x
y

)
= µ(c) and

(
x′

y′
)

= µ(c′), so we have

a(x−x′) = b(y′−y). Since a and b are co-prime, Gauss

lemma implies that a | y′−y and b | x−x′. From Lemma

1 , we have that |y′ − y| ≤ Fn+2, thus if a > Fn+2 we

deduce that y′ − y = 0 and therefore x− x′ = 0. In the

case where b > Fn+2 we obtain in the same way that

(x, y) = (x′, y′). In both cases it enables to prove that

c = c′, using Proposition 1.

Example 2 With a = Fn+2 and b = Fn+3 both condi-

tions of Proposition 2 are satisfied. We recover the case

of Proposition 3 in [21], as ψ1,2(0n) = (Fn+2, Fn+3).

Corollary 1 Let E be an elliptic curve and a point

P ∈ E of order N . Let n, a and b be three positive in-

tegers such that

- a and b are co-prime,

- a > Fn+2 or b > Fn+2,

- aFn+1 + bFn+2 < N and aFn+2 + bFn+1 < N .

Then the 2n chains c ∈Mn compute 2n different points

when applying Algorithm 1 starting from (aP, bP )

rather than from (P, 2P ).

Proof. Let us consider two different elements c and c′ of

Mn as well as the two points χa,b(c)P and χa,b(c
′)P in

E obtained from Algorithm 1. These two points are the

same if and only if χa,b(c) is congruent to χa,b(c
′) mod-

ulo N . The precedent proposition and the first two con-

ditions of the corollary ensure that χa,b(c) 6= χa,b(c
′).

Since χa,b(c) = (a, b)µ(c) and χa,b(c
′) = (a, b)µ(c′),

Lemma 1 and the third condition of the corollary imply

that χa,b(c) < N and χa,b(c
′) < N . Thus χa,b(c)P 6=

χa,b(c
′)P in E.

Example 3 Let E be an elliptic curve, and P a point of

order N > F2n+4. We have Fn+2Fn+1 + Fn+3Fn+2 =

F 2
n+2+F 2

n+1 = F2n+4, so starting from (Fn+2P, Fn+3P )

and applying Algorithm 1 with the 2n chains of Mn

enable us to compute 2n different points of E. It corre-

sponds to Method 1 described in [21].
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Example 4 Another possibility is to start from (P, bP ),

where b > Fn+2 and the order of the point P is greater

than Fn+1+bFn+2. It requires to precompute the points

P and bP with the same Z-coordinate unless bP can be

efficiently computed on the fly.

4 An EAC-based scalar multiplication

algorithm for curves with an efficient

endomorphism

The first method proposed in [21] requires to start from

a pre-computed couple of points (Fn+2P, Fn+3P ). Re-

sults from the previous section show that it can be ex-

tended to any pair of points (aP, bP ) when a and b sat-

isfy the hypotheses of Corollary 1. Now our concern is

to adapt these methods to the variable-base scalar mul-

tiplication case. Example 4 gives food for thought: in

this case we just need P and bP . If the curve is endowed

by an endomorphism φ, we can obtain bP = φ(P ) with-

out precomputation. However the integer b given in

such a way has no reason to verify the hypotheses of

Corollary 1. Fortunately, we prove in this section injec-

tivity results when starting from (P, φ(P )).

From now on, we will consider the context of an

elliptic curve E endowed with a non trivial endomor-

phism φ defined over Fp. We follow the notation adopted

by [11]: we fix P ∈ E a point of prime order N such

that #(E)/N ≤ 4, and X2 + rX + s the characteristic

polynomial of φ. We will denote by λ the unique ele-

ment of [0, N − 1] such that φ(P ) = λP . The following

result is established in section 2.1 of [11] and in Lemma

6 of [27].

Proposition 3 Let (k1, k2) ∈ Z2 \ {(0, 0)}. If k1 +

k2λ ≡ 0 mod N then

max (|k1| , |k2|) ≥

√
N

1 + |r|+ s
.

Combined with Proposition 1 it enables us to prove

the following injectivity result.

Proposition 4 Under the assumptions above and if

N > F 2
n+2 (1 + |r|+ s), then the 2n chains c ∈ Mn

compute 2n different points when applying Algorithm 1

starting from (P, φ(P )) rather than from (P, 2P ).

Proof. Starting from (P, φ (P )) and applying Algorithm

1 with an EAC c ∈ Mn, one computes k1P + k2λP ,

where
(
k1
k2

)
=
∏n
i=1 Sci

(
1
1

)
, that is

(
k1
k2

)
= µ(c). Let

(c, c′) ∈M2
n such that c and c′ compute the same point

starting from (P, φ (P )). Therefore

k1 + k2λ ≡ k′1 + k′2λ (N) ,

where
( k′1
k′2

)
= µ(c′). We deduce

(k1 − k′1) + (k2 − k′2)λ ≡ 0 (N) .

But we know that both components of µ(c) and µ(c′)

are less or equal to Fn+2, we thus have

|ki − k′i| <

√
N

1 + |r|+ s
for i ∈ {1, 2} .

Use Proposition 3 to obtain ki = k′i for i ∈ {1, 2}, and

Proposition 1 to conclude c = c′.

Based on this result, we propose an alternative way

to the classical cryptographic primitive which, start-

ing from a point P , maps a random n-bit integer k to

a random point in the group <P >. First randomly

generate an EAC c ∈ Mn. Then, starting from the

couple (P,Q) = (P, φ (P )), apply the ZADD addition

procedure to obtain, whether the current bit of c is

0 or 1, a new ordered pair of points (Q,P + Q), or

(P, P +Q) (see Algorithm 2). Notice that Algorithm 2

uses a slightly different version of ZADD called ZADDb

(see Algorithm 3 in the Appendix B). In this version,

for each iteration, the coordinates of the two starting

points P and Q are used in order to store some inter-

mediate results and are then replaced by the coordi-

nates of the new current couple of points (P, P +Q) or

(Q,P +Q). The algorithm takes the current bit of the

addition chain as a parameter.

Algorithm 2 PointFromEAC(EAC c)

Require: P (X,Y, 1) and Q = φ(P ) = (X ′, Y ′, 1)

Ensure: Update Q with the point computed from

(P, φ(P )) and the Euclidean addition chain c.

1: for i = 1 . . . length(c) do

2: ZADDb(ci)

3: end for

4: ZADDb(1)

5: return Q

This way, we obtain a method which maps a ran-

dom EAC chain c to a point. From a practical point of

view, in order to guarantee that we compute 2n distinct

points, it is sufficient to satisfy the inequality of Propo-

sition 4. As Fn = γn−γn

√
5

where γ = 1+
√
5

2 and γ =

1−
√
5

2 , it is sufficient to choose N > γ2n+4 1+|r|+s
5 . The

size of the right hand side is equivalent to 2n log2(γ),

which is between 1.388n and 1.389n. It amounts to

choosing a larger base field, as the size of E(Fp) is close

to p by Hasse-Weil bounds. For convenience, we sum up

in Table 1 the size of the field necessary to guarantee

the injectivity.
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Security level 96 128 192

Field size 269 358 536

Table 1: Field size required for a given security level

when φ satisfies φ2 + rφ + s = 0 and (r, s) =

(0, 1)/(1, 1)/(−1, 2).

5 Implementation and performances

(Weierstrass model)

In this section we analyze the computational cost of

our method in comparison to the GLV method when

using the classical Weierstrass model. We also propose

various implementations and we consider the specific

context of mobile device to illustrate the relevance of

our approach. All our source codes and collected results

are available on GitHub:

https://github.com/eacElliptic.

The detailed characteristics of the two platforms we

used (an Android smartphone and an x64 based com-

puter), as well as the various auxiliaries tools are listed

in Appendix A.

5.1 Theoretical cost comparisons

Let us define Mt as the cost of a modular multiplication

of two t-bit integers modulo a t-bit prime number and

St that of a squaring. Our scalar multiplication scheme

using an EAC of length l consists of l calls to the ZADD

procedure (5Mt + 2St) plus the initial computation of

φ(P ). The cost of this computation will not be taken

into account neither for GLV nor for our method.

Important Remark : From the previous section, in

order to guarantee a `/2-bit security level, t must be

chosen close to 1.4` and such that there exists a curve

over a field of this size with an efficient endomorphism.

If we omit the computational cost of finding a suitable

decomposition for the scalar k in the form k1 +k2λ, the

standard GLV method requires the computation of the

points φ(P ), φ(P ) + P and φ(P ) − P , the recoding of

k1 and k2 in joint sparse form and finally (for a `/2 bit

security level), `/2 point doublings and on average `/4

point additions. Each doubling has a cost of 2M` + 5S`
and each addition (provided that the stored points are

in affine coordinates) costs 7M` + 4S`. However, this

method is not secure against Simple Side Channel anal-

ysis, that is why we also consider in our comparisons

a secure version of the GLV method: GLV-SAC [12].

In that case one point doubling and one point addi-

tion is performed for each scalar bit but only the point

φ(P )+P need to be stored. We summarize the different

costs in Table 2. The costs of the classical and secure

versions of GLV directly depend on the size of the inte-

ger k. The cost of our method depends on the length of

the EAC used in Algorithm 2. We provide numbers for

some specific security levels in Table 3. In any case, the

standard GLV method should be faster than the EAC

approach but in the case of SPA resistant methods, we

can expect our method to be competitive.

Indeed, let us consider the context where multipli-

cation and squaring have the same cost. From Table 2,

to obtain a `′-bit security level, the EAC scalar mul-

tiplication algorithm needs 14`′ + 7 field multiplica-

tions over t-bit integers (where t is greater than 2.8`′).

The same computation involves 18`′ field multiplica-

tions over 2`′-bit integers for the protected version of

GLV. Our method should be efficient as soon as

Mt <
18`′

14`′
M2`′ . (2)

Hence , if Mt < 1.29M2`′ , we have an efficient alterna-

tive to the GLV protected method.

5.2 From theory to practice

From a theoretical point of view, when t is about 2.8`′,

the ratio Mt/M2`′ should be closed to (1.4)2 since the

Method field operations

EAC (`+ 1)(5Mt + 2St)

W-GLV `/2× (5.5M` + 7S`)

W-GLV-SAC `/2× (9M` + 9S`)

Table 2: Cost analysis of different scalar multiplication

methods for a `/2-bit security level.

Method 96-bit security

EAC 965M269 + 386S269

W-GLV 528M192 + 672S192

W-GLV-SAC 864M192 + 864S192

Method 128-bit security

EAC 1285M358 + 514S358

W-GLV 704M256 + 896S256

W-GLV-SAC 1152M256 + 1152S256

Method 192-bit security

EAC 1925M536 + 770S536

W-GLV 1056M384 + 1344S384

W-GLV-SAC 1728M384 + 1728S384

Table 3: Theoretical cost of scalar multiplication for a

given security level.
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classical multiplication algorithm is quadratic.

Hence, we do not expect the condition (2) to be ve-

rified generally. However, we would like to convince the

reader that there exist some real-life contexts in which

(2) holds. The aim of this part is to show that it is

the case when using general purpose multi-precision li-

braries (whereas the manipulated data can be stored in

few 64-bit words, as already noticed in [13]). There do

exist many real-life cryptographic contexts where such

libraries are used:

– the popular OpenSSL cryptographic software libra-

ry relies on the BIGNUM library,

– the secure communication library GnuTLS included

in the Synology Diskstation operating system relies

on the GNU Multiple Precision arithmetic library,

– the Spongy Castle cryptographic library provided

in the Android operating system relies on the Java

BigInteger library.

From a practical point of view, the way the arbitrary

precision library manages large integers as well as the

real amount of memory used to store such integers must

be taken into account. Generally speaking, each mul-

tiprecision library provides a multiplication procedure

which is twofold: it executes the actual computation of

the multiplication and also makes some extra opera-

tions needed to manage the large integers involved in

this computation So, let us denote by M̃t the cost of

such a procedure for two t-bit integers. Our method

will be efficient as soon as

M̃t < 1.29M̃2`′ . (3)

To identify some contexts where this inequality holds,

we have made several benchmarks for modular multi-

plications over integers of size 192, 269 (' 192 × 1.4),

256, 358 (' 256 × 1.4), 384, 538 (' 384 × 1.4). For

these benchmarks we have used the BigInteger Java li-

brary provided in the Android Software Development

Kit, the BigInteger Java library provided by Oracle in

Java SE for x64 platforms and the GNU Multiple Pre-

cision arithmetic library. Table 4 sums up the various

execution time ratios for 221 modular multiplications

between t-bit integers and 1.4t-bit integers. Favorable

cases for our method appear in boldface. The ratio be-

tween 538-bit integers and 384-bit integers is about 1.9

for the multiplication procedure on our Android plat-

form. This is due to the fact that the BigInteger li-

brary differently manages integers whose bit-length is

less than 512 and integers whose bit-length is greater

or equal than 512.

Remark 1 Notice that for Gnu MP these experimental

results should be carefully considered. Indeed, we are

near from the 1.29 bound of relation (3). If we only

t (bits) ' 1.4t τ× τ% τ∗
192 269 1,04095 1,05315 1,04927

256 358 1,00435 1,08456 1,05934

384 538 1,91747 1,12702 1,36432

Big Integer Android

t (bits) ' 1.4t τ× τ% τ∗
192 269 1,75618 1,64688 1,66882

256 358 1,83208 1,80546 1,81148

384 538 1,75453 1,89138 1,85883

Big Integer Java SE

t (bits) ' 1.4t τ× τ% τ∗
192 269 1.15566 1.32298 1.25854

256 358 1.17041 1.32226 1.26592

384 538 1.37065 1.55186 1.48633

Gnu MP

Table 4: Execution time ratio between operations over

1.4t-bit integers and t-bit integers. τ× : ratio for multi-

plication over integers, τ%: ratio for modular reduction,

τ∗ : ratio for modular multiplication.

consider the multiplication procedure, the ratio is far

enough from 1.29 for t ∈ {192, 256}. The problem comes

from the additional cost of the modular reduction. De-

pending on the architecture and the processor used, it

should happen that we obtained a ratio for the modu-

lar multiplication greater than 1.29 (for t ∈ {192, 256})
because of the modular reduction.

Remark 2 We have chosen to consider the Android plat-

form because it is widely used in everyday connected

objects like smartphones, tablet computers, GPS, car

PC, and so on. . . More generally, there are several Java

based platforms and this technology is considered by

most of the developers as a de facto standard for devel-

oping embedded applications.

Since 2014, the Android operating system includes

the Spongy Castle library, a cut-down version of Bouncy

Castle Java library. This latter provides a lightweight

cryptography API for Java. Bouncy Castle and Spongy

castle both use the BigInteger Java library to operate on

large integers. This library is also a part of the Java SE

provided by Oracle but it differs from the version pro-

vided in Android when concerning low-level arithmetic

computations. The former is written in pure Java while

the latter makes calls to the BIGNUM library written

in C and used in OpenSSL.

None of the libraries we used provide a specific method

for squaring, so we fit the hypothesis made in the previ-

ous subsection about the identical cost of multiplication

and squaring.
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5.2.1 Collected results

To reach the same level of security as the classical GLV

method, the conclusion of section 3 suggests that we

have to work with integers which are about 1.4 times

larger. As shown in Table 4, when using the above men-

tioned libraries a modular multiplication between 1.4t-

bit integers and t-bit integers is:

- about 1.05 times slower on Android for t ∈ {192, 256},
- about 1.26 times slower on an x64 platform with

GnuMP for t ∈ {192, 256},
- at least 1.7 times slower on an x64 platform with

Java SE for t ∈ {192, 256, 384}.
Let us briefly explain these results. When using multiple

precision libraries, two factors determine the cost of a

modular multiplication: arithmetic (whose cost grows

quadratically) and memory management (whose cost

grows linearly). In order to understand the total cost of

such an operation, we have to consider two cases: both

parts are implemented using the same language or each

of them is programmed in a specific one.

In the first case, the cost strongly depends on the

relative cost of arithmetic and memory allocation in the

given language. In the second case, the relative speed of

the programming language used may have more impact

on the overall performances than the cost of the oper-

ations themselves. For instance, in the BigInteger Java

library provided by Android, arithmetic is performed

using a C library (BIGNUM). Even though, the latter

is supposed to be quadratic, the fact that Java is much

more slower than C makes in this case the memory man-

agement be the costliest operation. With regards to the

Big Integer Java library provided by Oracle for an x64

platform, arithmetic and memory are both managed

in Java. For the size of the manipulated data, mem-

ory management performs better than multiplication.

For Gnu MP, arithmetic performs better than mem-

ory management for the key sizes used in elliptic curve

cryptography.

As a concrete illustration, we have used the pro-

filer included in the Android software development kit

in order to obtain the anatomy of a modular multipli-

cation between two 256-bit integers using the BigIn-

teger Java library (see Figure 1). The code we have

developed computes 217 products of two random 256-

bit integers modulo a random 256-bit prime integer. To

compute such a product, our Java method makes a call

to the multiply and mod methods of the BigInteger li-

brary which in turn invoke other internal methods. For

each of them, the ratio of the execution time of each

call is given as well as the ratio of the execution time

spent to execute the instructions of the method itself

(denoted as “Self” in the figure).

It turns out that the actual product (NativeBN.-

BN mul) and modular (NativeBN.BN nnmod) opera-

tions represent respectively about 2.8% and 9.9% of

the whole process. The rest of the time is spent be-

tween memory allocation (BigInt.newBigInt) and the

management of the Java objects used to store large inte-

gers (see Figure 2 where we have isolated the time spent

for allocation and actual execution from the time spent

for other treatments). When the size of the integers is

between 192 bits and 384 bits, the time spent for the

actual computation of a modular multiplication takes

at most 14% of the total execution time. This grows

up to at most 20% for 512 to 717-bit integers. Hence

for typical cryptographic key sizes, most of the time is

spent between memory allocation and management of

the Java objects involved in the computation process.

From our experimental results, this time is almost iden-

tical for t-bit integers and 1.4t-bit integers (see Table

5). This explains the important difference between the

theoretical ratio of (1.4)2 and the observed one.

Using the GNU C profiler and the Java Netbeans pro-

filer, we performed a similar study to obtain the ana-

tomy of a modular multiplication for an x64 platform

(see Figures 3 and 4 in Appendix C). It turns out that

for a Java implementation, we cannot expect to obtain

Fig. 1: Anatomy of a Java method computing a modular

multiplication over 256-bit integers using Big Integer

Java library provided with Android operating system

(obtained from Android SDK profiler).

Modular Multiplication (256 bits)

BigInteger.multiply (40.77%) BigInteger.mod (56.84%)

Self 2.39%

BigInt.product (61.01%)

BigInteger.<init>
(18.64%)

BigInteger.getBigInt
(5.48%)

Self (14.87%)

BigInt.modulus (56.25%)

BigInteger.signum
(13.66%)

BigInteger.<init>
(13.52%)

BigInteger.getBigInt
(3.88%)

Self (12.68%)

BigInt.newBigInt (66.21%)

NativeBN.BN mul
(11.39%)

BigInt.Check (4.42%)

Self (17.98%)

BigInt.newBigInt (51.15%)

NativeBN.BN nnmod
(30.9%)

BigInt.Check (3.54%)

Self (14.41%)
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NativeBN.BN mul
2.8%

Allocation for product

16.5%

Allocation for modulus

16.4%
NativeBN.BN nnmod

9.9%

Other

54.5%

Fig. 2: Distribution of the execution time of various op-

erations involved in the modular multiplication of 256-

bit integers on an Android platform.

t (bits) ' 1.4t Execution time ratio for

memory and object management

192 269 1,00564

256 358 0,99838

384 538 1,00485

Table 5: Execution time ratio for memory allocation

and management between t-bit BigInteger objects and

1.4t-bit BigInteger objects.

a competitive algorithm. Indeed, the actual computa-

tion of the multiplication is written in pure Java and its

execution time is not a negligible part of the multiply

procedure.

To sum up, the results of Table 4 show that there

exist some practical contexts where the execution time

of a modular multiplication between integers used in

our EAC scheme satisfies the condition (3).

5.2.2 Practical implementations

To illustrate this purpose, we have implemented on an

Android device and on an x64 platform (using Gnu MP)

the classical GLV method, the protected version of GLV

and our method.

First, notice that the EAC scalar multiplication algo-

rithm needs only few lines of code (see Algorithm 2 and

Algorithm 3 in Appendix B). Jacobian coordinates are

used to represent all points and only the ZADD ad-

dition formula has to be implemented. For GLV and

GLV-SAC two initial steps have to be implemented: a

precomputation step which splits k into k1 and k2 (Al-

gorithms 4 and 5, Appendix B) and an encoding pro-

cess to put k1 and k2 in JSF form [33] or SAC form

(Algorithm 8, Appendix B). Moreover, we need to im-

plement addition formulas for mixed affine-Jacobian co-

Method/Platform Android
EAC/W-GLV (without encoding) 1.03
EAC/W-GLV (with encoding) 0.98

EAC/W-GLV-SAC (without enc.) 0.75

EAC/W-GLV-SAC (with encoding) 0.73

Method/Platform Gnu MP, x64
EAC/W-GLV (without encoding) 1.38
EAC/W-GLV (with encoding) 1.32
EAC/W-GLV-SAC (without enc.) 0.98

EAC/W-GLV-SAC (with encoding) 0.96

Method/Platform Android
(x-only)

EAC/W-GLV (without encoding) 0.91

EAC/W-GLV (with encoding) 0.87

EAC/W-GLV-SAC (without enc.) 0.69

EAC/W-GLV-SAC (with encoding) 0.67

Method/Platform Gnu MP, x64
(x-only)

EAC/W-GLV (without encoding) 1.23
EAC/W-GLV (with encoding) 1.18
EAC/W-GLV-SAC (without enc.) 0.88

EAC/W-GLV-SAC (with encoding) 0.86

Table 6: Execution time ratio between EAC and GLV schemes
for a 128-bit level of security.

ordinates, as well as doubling formulas.

Although the classical GLV version is included in Spongy

castle, we decided to make our own implementation.

This way, we aim to make a fair comparison between our

method, the protected version of GLV and the classical

one. Indeed, Spongy Castle library uses generic Java

objects and includes several tests so that the end-user

can make his choice between different kinds of curves

and scalar multiplication algorithms. This will certainly

slow down the execution time as compared to a specific

version dealing only with the GLV method.

We have chosen to implement GLV (Algorithm 6,

Appendix B) and GLV-SAC (Algorithm 7, Appendix B)

for the curve E(Fp) : y2 = x3 + 5 with p = 2256 − 1539,

and our EAC scheme for the curve E(Fp) : y2 = x3+17

with p = 2358 − 36855. These two sets of parameters

guarantee a 128-bit security level (see Table 1). The

corresponding endomorphism φ satisfies φ2 +φ+1 = 0.

It corresponds to the map (x, y) 7→ (βx, y) where β is

an element of order 3.

In order to compare these methods, we have recorded

the average execution time of 217 scalar multiplications.

Table 6 gives the corresponding ratios. The favorable

cases for our method appear in boldface. Notice that

for the GLV methods, the computation of kP (for vari-

ous points P ) requires to decompose k into two smallest

integers k1 and k2. This encoding process is often over-
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looked in the computational cost of kP . However, in

some contexts, k and P can both change and thus this

encoding process can slow down the whole GLV execu-

tion. The encoding process for GLV is done by Algo-

rithms 4 and 5 (Appendix B) as described in [31]. The

running time of this decomposition is better than those

of the original encoding process proposed by Gallant,

Lambert and Vanstone. For GLV, the integers k1 and k2
must then be put into Joint Sparse Form [33]. For GLV-

SAC, k1 and k2 must be post-processed by Algorithm

8 (Appendix B, adapted from [12] to fit in our context).

Instead of randomly choosing the integer k, another way

is to randomly generate k1 and k2 as suggested and jus-

tified in [9]. Notice that in this case the recomposition

of k from k1 and k2 is no more injective. In Table 6, we

made comparisons with two versions of GLV: one with

the encoding of k, and the other one without encoding.

It turns out that on an Android platform, the EAC

scalar multiplication algorithm performs well as com-

pared to the classical GLV algorithm (only 3% slower)

and can even be faster (2%) in the context where k

and P both vary. The most significant gain is obtained

when taking into account the resistance to side chan-

nel attacks since our scheme is at least 25% faster than

the protected version of GLV. For the x64 platform,

our execution time is 2% faster than the secure version

of GLV (this result should be carefully considered as

explained in Remark 1). We obtain a more significant

gain if we target x-coordinate-only system (see Section

9 and [9]).

Remark 3 We insist on the fact that once we have cho-

sen a general multi-precision library, our constraint is

to use the primitives offered by this latter. Hence, we

do not consider any optimized modular reduction.

Let us focus on the classical multiplication opera-

tion over integers. For 96-bit and 128-bit security lev-

els, Table 4 (column τ×) shows that the EAC method

should always perform better than GLV-SAC on an An-

droid platform (or an x64 platform using GNU MP).

Hence, if we consider both for GLV-SAC and our al-

gorithm some specific primes p (like in our examples),

using fast modulo reduction techniques will certainly

optimize numbers given in the column τ%. Thereby,

compared to GLV-SAC, the performances of the EAC

algorithm should be better.

Remark 4 The fact that our method is only 3% slower

than the classical GLV method (without encoding) may

seem curious. The results of Table 3 show that there are

1.12 as many multiplications in the EAC based algo-

rithm than in the GLV method. Since, from Table 4, a

modular multiplication between two 358-bit integers is

about 1.06 times slower than a multiplication between

two 256-bit integers, this should lead us to an execution

time ratio of 1.12×1.06 ' 1.187 rather than 1.03. Now,

let us isolate in our experimental results the time spent

for modular multiplications during the scalar multipli-

cation algorithm. We observe a ratio of about 1.19.

This result confirms the theoretical analysis of subsec-

tion 5.1. This gives us the opportunity to emphasize the

need for caution when only considering the cost of the

modular multiplication in order to state the complex-

ity of a scalar multiplication algorithm. Indeed, if we

take into account the whole computation process, in-

cluding modular additions, modular multiplications by

constants which appear in point addition formulas and

the management of the different auxiliary Java objects

used in all these computations, the theoretical ratio of

1.19 boils down to a practical ratio of 1.03. Addition

formulas used for GLV [4] involve some field multipli-

cations by a constant. Even if those multiplications can

be done using the BigInteger.shiftleft() method

of the BigInteger library, their cost is non-negligible.

6 Implementation and performances

(extended twisted Edwards curves model)

Ted127-glv4 [12] and FourQ [10] are the two actual most

efficient (and secure) scalar multiplication algorithms.

They rely on the four-dimensional GLV algorithm and

take advantage of both the extended twisted Edwards

coordinates [22], which offer the fastest known curves

addition formulas over large prime characteristic fields

and of two efficient endomorphisms. Nevertheless, some

precomputed points need to be stored for table lookups.

As an example, 512 bytes of memory are needed to store

8 points in Ted127-glv4.

A raw comparison of our approach with these meth-

ods is complicated. On the one hand, without a doubt,

methods using two endomorphisms are faster, on the

other hand our implementation context is quite differ-

ent (arithmetic over Fp, low memory usage and curves

with one endomorphism). However, it seems fair to take

advantage of the twisted Edwards coordinates system,

to compare our approach to the 2-dimensional version

of GLV-SAC, which matches our context.

6.1 Theoretical cost comparisons with GLV-SAC

In extended twisted Edwards coordinates, a point is

represented by four coordinates (X,Y, T, Z) with T =

XY/Z. Using Algorithm 7, each point doubling is fol-

lowed by a point addition. The best performances for
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this sequence of operations is obtained by mixing stan-

dard twisted Edwards coordinates with extended twisted

Edwards coordinates (as explained in [22]). This leads

to 10M` + 4S` for a `/2-bit security level (see Table 7

and 8). It appears from this first theoretical approach,

that we cannot outperform GLV-SAC when using ex-

tended twisted Edwards coordinates.

Once again, experimental results (see Table 9) reveal

that we have to carefully take into account every com-

putations in order to evaluate the real cost of a scalar

multiplication algorithm. Results from Table 9 have

been obtained by implementing GLV-SAC on the twisted

Edwards curve E(Fp) : −x2 + y2 = 1 + x2y2 with

p = 2256−43443. The order of the curve is 8.h for some

prime h. The corresponding endomorphism φ satisfies

φ2+1 = 0. It corresponds to the map (x, y) 7→ (αx, 1/y)

where α is an element of order 4 [25]. Parameters for

our EAC scheme are those defined in section 5.2.2. In

order to compare these two methods, we have recorded

the average execution time of 217 scalar multiplications.

Let us explain the results obtained on the Android

platform. First, from Table 4, we see that the compu-

tational cost of a 358-bit modular multiplication barely

exceed that of a 256-bit one. The ZADDb procedure

involves precisely 7 modular multiplications (assuming

the same cost for squaring and multiplying operations)

and 7 modular additions. The mixed coordinate addi-

tion for the twisted Edward curves [22] involves pre-

cisely 14 multiplications, 14 additions, 1 multiplication

Method field operations

EAC (`+ 1)(5Mt + 2St)

TED-GLV-SAC `/2× (10M` + 4S`)

Table 7: Cost analysis of EAC and TED-GLV-SAC for

a `/2-bit security level (t ' 1.4`).

Method 96-bit security

EAC 965M269 + 386S269

TED-GLV-SAC 960M192 + 384S192

Method 128-bit security

EAC 1285M358 + 514S358

TED-GLV-SAC 1280M256 + 512S256

Method 192-bit security

EAC 1925M536 + 770S536

TED-GLV-SAC 1920M384 + 768S384

Table 8: Theoretical cost of scalar multiplication for a

given security level.

Method/Platform Android
EAC/TED-GLV-SAC (without enc.) 0.95

EAC/TED-GLV-SAC (with enc.) 0.93

Method/Platform Gnu MP, x64
EAC/TED-GLV-SAC (without enc.) 1.41
EAC/TED-GLV-SAC (with enc.) 1.39

Method/Platform Android
(x-only)

EAC/TED-GLV-SAC (without enc.) 0.84

EAC/TED-GLV-SAC (with enc.) 0.82

Method/Platform Gnu MP, x64
(x-only)

EAC/TED-GLV-SAC (without enc.) 1.21
EAC/TED-GLV-SAC (with enc.) 1.19

Table 9: Execution time ratio between EAC and TED-GLV-
SAC schemes for a 128-bit level of security.

by 2 and on average the computation of a modular op-

posite:

1. a doubling requires 8 multiplications, 6 additions

and a multiplication by the curve constant a, which

in our case is equal to -1,

2. an addition requires 6 multiplications, 8 additions

and two multiplications by 2 [22],

3. half the time the opposite of one of the two affine

points P or P + φ(P ) has to be computed.

The multiplication by 2 can be implemented using

either the BigInteger.shiftleft() method or using

the BigInteger.add() method. Experimental results

shows that the execution time of these two methods is

almost equivalent. Indeed, these two methods allocate

a new BigInteger object, and as it has already been dis-

cussed in section 5.2.1, the most important part in the

execution time of an operation comes from the memory

allocation.

Similarly, the modular opposite can be implemented

using either the BigInteger.neg() method or the

BigInteger.subtract() method. For the reasons men-

tioned above, these two operations are almost equiva-

lent.

Table 10 summarizes the cost of those two methods

for a `-bit security level (D` denotes the multiplication

by 2 of an `-bit integer and N` the modular opposite of

an `-bit integer). As soon as computing `(3D`/2 +N`)

is slower than computing 7Mt + 7At our approach be-

comes more efficient. In other words, we have to com-

pare the allocation time of 14 BigInteger objects used

to compute 7Mt+7At, with the allocation time of 5`/2

BigInteger objects used to compute `(3D`/2 +N`).

Let TEAC be the execution time of our EAC method.

Considering that the execution time of a 256-bit and a
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Method field operations

EAC (`+ 1)(7Mt + 7At)

TED-GLV-SAC `/2× (14M` + 14A` + 3D` + 2N`)

Table 10: Cost analysis of EAC and TED-GLV-SAC for

a `/2-bit security level (t ' 1.4`).

358-bit modular multiplication (or addition) is roughthly

the same, the computational cost of TED-GLV-SAC

should be TEAC+δ( 5×256
2 −14) where δ is the execution

time of memory allocation. Those allocations are done

through calls to the BigInt.newBigInt() method. Ex-

perimentation has shown that its execution time is about

50 microseconds which leads to a ratio of

TEAC

TEAC + 31300
.

Performing 217 scalar multiplications, we have obtained

an average execution time of 693943 microseconds for

TEAC, which gives a ratio of about 0.96, in accordance

with the results of row 1 in Table 9. Notice that the

same analysis cannot be done for the x64 platform: the

difference between the execution times of modular mul-

tiplications is too large (see Table 4).

It turns out that on an Android platform, the EAC

scalar multiplication algorithm performs well as com-

pared to the 2-dimensional GLV-SAC algorithm even in

the context of extended twisted Edwards coordinates.

Using the x-coordinate-only system makes the compar-

ison even more favorable.

On an x64 platform, on the one hand the x-coordinate-

only version of EAC is 1.2 times slower than TED-

GLV-SAC, but on the other hand TED-GLV-SAC needs

1.4 times more memory (see section 8). Our method

achieves a reasonable trade off between execution time

and data storage.

7 Security

Our algorithm is based on the constant time ZADDb pro-

cedure making it intrinsically immune to simple side

channel attacks like power consumption measurement.

Moreover, the procedure is composed of a fixed sequen-

ce of instructions (mixing multiplications and subtrac-

tions over the prime field) which does not depend on

the scalar k. This is enough to thwart many instruc-

tion cache timing attacks [1,3,35]. Yet, some additional

precaution must be taken in order to resist to the at-

tack proposed in [7]. Indeed, considering the table built

from the precomputed points, each bit of the key leads

a table lookup to select one of these points. The corre-

sponding index is a scalar digit which can be revealed

thanks to a cache timing trace. Since the selected in-

dex is linked to the key, the attacker can derive the

value of the key. GLV-SAC is vulnerable to this attack.

As a possible countermeasure, the author of [24] pro-

poses to transverse the entire table for each table lookup

and to use some functions to compute the correct in-

dex. That means that the entire table is loaded into the

cache. In the ZADDb procedure, we have a table of two

points and, at each iteration, these two points are used.

Consequently, their addresses should always be loaded

into the cache. However, as it can be seen in the ZADDb

procedure, some operations depends on the address of

the point that is used. As an example, in line 4, the

CPU will either load X0 or X1 in order to perform the

multiplication Xb.C. An attacker could actually fill the

cache with values to observe timing differences depend-

ing on where and how many of the operands X0 and

X1 are used. In our context, the countermeasure de-

scribed in [24] can be simplified because we only need

to transverse two points. We describe in Algorithm 10

a safe permutation that returns a pair of points (P,Q)

or (Q,P ) depending on bit b. We then adapt the ZADDb

procedure and our EAC scheme to take into account

this safe permutation (see Algorithms 9 and 11). We

will see in the next section why this countermeasure

cannot be applied as such for TED-GLV-SAC.

8 Memory usage

Table 11 sums up (for a 128-bit level of security) the

number of registers needed to store the coordinates of

the various points involved in the computation of kP

as well as the number of auxiliary registers used for

the addition and doubling formulas (see Algorithm 3 in

Appendix B and [4]).

Notice that for the EAC algorithm, the two initial

input points are represented using Jacobian coordinates

and share a common coordinate Z. Moreover, since the

input points are used to store intermediate results as

well as the coordinates of the computed point (Algo-

rithm 2, Appendix B), the ZADDb procedure can be im-

plemented with only two additional registers.

For GLV (resp. GLV-SAC), in the Weierstrass model,

the four (resp. two) input points are in affine coor-

dinates, while intermediate points and the computed

point are in Jacobian coordinates. For TED-GLV-SAC,

the two input points are in extended affine coordinates

(x, y, xy, 1), and the intermediate point Q is either rep-

resented in extended or standard twisted Edwards co-

ordinates. In both cases, intermediate results cannot be

stored into the coordinates of the input points because
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Algorithms 6 and 7 in Appendix B use these points at

each iteration of their main loop. Four (resp. two) ad-

ditional registers are needed for the whole computation

of GLV and GLV-SAC (resp. TED-GLV-SAC).

Method EAC EAC x-only
Field size 358 358
Registers for points 5 4
Auxiliary registers 2 2
Mem. size (bits) 2506 2148
Mem. size (bytes) 314 269
Mem. size (32-bit) 79 68
Mem. size (64-bit) 40 34

Method GLV GLV-SAC TED-GLV-SAC
Field size 256 256 256
Registers for points 11 7 10
Auxiliary registers 4 4 2
Mem. size (bits) 3840 2816 3072
Mem. size (bytes) 480 352 384
Mem. size (32-bit) 120 88 96
Mem. size (64-bit) 60 44 48

Table 11: Memory usage in bits/8-bit words/32-bit words/64-
bit words for a 128-bit level of security.

Remark 5 Our countermeasure (see previous section)

cannot be applied as such for GLV-SAC and TED-GLV-

SAC even though two precomputed points are used.

The points P or P + φ(P ) can be safely selected. How-

ever, half the time the points −P or −(P +φ(P )) have

to be computed, leading to possible leakage. To prevent

this, the four points P , P +φ(P ), −P and −(P +φ(P ))

must be stored and the table lookup must be imple-

mented as suggested in [24].

Remark 6 A faster version of GLV-SAC for 2-dimen-

sional GLV is described in section 3.2 of [12]. The draw-

back is that eight points must be stored instead of two.

The same remark can be made for the two fastest scalar

multiplication algorithms yet, namely Ted127-glv4 and

FourQ. Both algorithms each require 512 bytes to store

the precomputed points when ours only require 224

bytes.

Compared to the methods using at least one endo-

morphism, the EAC scalar multiplication algorithm is

less memory consuming. Hence it seems well suited for

memory constrained devices.

9 Other Related works

In [9] the authors use a curve and its quadratic twist

(over Fp2) to obtain a fast x-coordinate-only scalar mul-

tiplication algorithm using 256 bytes of memory for pre-

computations. Our method can also be derived in an x-

coordinate-only scheme as described in [28] (see Table

6) and only uses 179 bytes of memory. Moreover, con-

trary to the method proposed in [9], our algorithm guar-

antees that for two distinct inputs, two distinct points

are output.

An implementation of GLV (standard and secure ver-

sion) for OpenSSL is discussed in [6]. For a 128-bit se-

curity level, the proposed secure version is about 10%

slower than the standard GLV version. We cannot make

a practical comparison with this proposal because we

did not investigate the OpenSSL library. Now, OpenSSL

and Android both rely on the BIGNUM C-library for

arithmetic over large integers. We can just notice that

on Android, the performances of both classical GLV

and our method are very close to one another (and 10%

faster for an x-only-coordinate system). On the other

hand, on an x64 platform with Gnu MP, we have an

additional cost of about 40% (and almost no additional

cost for an x-coordinate-only system).

Notice that another way to naturally obtain an x-only-

coordinate system for our method is to use the work

described in [17]. In this paper the authors describe

a modified version of the ZADD operation such that

all the computations can be done using only affine co-

ordinates. Since our scalar multiplication algorithm is

based on the ZADD primitive, we can benefit from this

procedure.

10 Conclusion

In this work we have given a mathematical context

which enables to use Euclidean addition chains on a

curve with one endomorphism. Therefore we have pro-

posed an efficient and secure algorithm for scalar mul-

tiplication which can be very easily implemented. The

proposed method does not compete with the fastest

ones on curves endowed with two endomorphisms. How-

ever, up to our knowledge, ours appears to be the less

memory among all endomorphism based methods con-

suming. For developers using the standard cryptographic

library included in the Android operating system, we

provide a competitive algorithm as compared to the

well known GLV method using one endomorphism, even

when using extended twisted Edward coordinates.

Acknowledgements: we would like to thank the ref-

erees for their careful reading and their helpful com-

ments.



14 Yssouf Dosso et al.

References
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Appendix A Benchmark Platforms

All our source codes and collected results are available on
GitHub:
https://github.com/eacElliptic.

The characteristics of the platforms we used for our bench-
marks are the following:

- Android platform : Wiko Cik Peax 2 phone, with Medi-
aTek MT6589 CPU (4 -core ARM Cortex-A7, 1.21 GHz),
Android Version : 4.1.2, API Level 16.

- Java platform : Intel Core I5-4210U 4-core 1.7Ghz, Broad-
well technology, JDK 1.7.0 79, Ubuntu 14.04 LTS.

- C platform : Intel Core I5-4210U 4-core 1.7Ghz, Broad-
well technology, gcc 5.2.1, gmp 6.1.0, Ubuntu 14.04 LTS.

From various benchmarks, when the CPU models are exactly
the same, it seems that on a given task Broadwell technology
is better than Haswell technology by 5 percent to 10 percent
or so. The Intel Turbo Boost technology has been disabled
on the x64 platform so that the frequency of the processor be
constant.

To collect the various execution results we have used the fol-
lowing tools:

- Android platform: the startMethodTracing and the
stopMethodTracing of the Debug class to generate trace
logs, and the System.currentTimeMillis() method to mea-
sure execution time,

- Java platform: the profiler provided with Netbeans IDE
(v. 8.1) and the System.currentTimeMillis() method,

- C platform: the clock.gettime() system call with
CLOCK_PROCESS_CPUTIME_ID option, and taskset to bind
our running process to only one processor.

Appendix B Algorithms

Algorithm 3 ZADDb(bit b)

Require: P (X0, Y0, Z) and Q(X1, Y1, Z)

Ensure: Update X0, Y0, X1, Y1 and Z such that

(X0, Y0, Z) and (X1, Y1, Z) be the representatives

of P and P +Q (or Q and P +Q whether b is 1 or

0).

1: C ← X1−b −Xb

2: Z ← Z.C

3: C ← C2

4: W ← Xb.C

5: X0 ← X1−b.C

6: C ← Y1−b − Yb
7: X1 ← C2 −W −X0

8: W ← X0 −W
9: Y0 ← Y1−b.W

10: W ← X0 −X1

11: Y1 ← C.W − Y1

Algorithm 4 Precomputation for GLV

Require: λ root of φ2 + φ+ 1 = 0 (mod #E(Fp))
Ensure: (a, b) is a short vector such that a + bλ ≡ 0

(mod #E(Fp)), Nα = NZ[φ]/Z(a+ bφ).

1: u← #E(Fp), v ← λ, q ← 0, y ← 0

2: x1 ← 1, y1 ← 0, x2 ← 0, y1 ← 1

3: while u >
√

#E(Fp) do

4: q ← bv/uc, r ← v − qu
5: x← x2 − qx1, y ← y2 − qy1
6: v ← u, u← r

7: x2 ← x1, x1 ← x

8: y2 ← y1, y1 ← y

9: end while

10: b← −y
11: a← u+ y

12: Nα ← u2 + b2 − ub
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Algorithm 5 Decompose(k)

Require: a, b, Nα
Ensure: k1 and k2 satisfy kP = k1P + k2φ(P )

1: x1 ← k(a+ b), x2 ← −kb
2: y1 ← bx1/Nαc, y2 ← bx2/Nαc
3: k1 ← k − (ay1 − by2), k2 ← −(ay2 + by1 + by2)

4: k1 ← k1 + k2
5: return (k1, k2)

Algorithm 6 PointFromGLV(k, PP )

Require: PP is (P,−P + φ(P ), φ(P ), P + φ(P ))

Ensure: Q = kP

1: (k1, k2)← Decompose(k)

2: ((xj , . . . , x0), (yj , . . . , y0))← SJSF(k1, k2)

3: u← xj + 3.yj
4: Q← (XPP [|u|−1], sign(u).YPP [|u|−1])

5: j ← j − 1

6: while (j > 0) do

7: Q← 2Q

8: u← xj + 3.yj
9: if u 6= 0 then

10: Q← Q+ (XPP [|u|−1], sign(u).YPP [|u|−1])

11: end if

12: end while

13: return Q

Algorithm 7 PointFromSGLV(k, PP )

Require: PP is (P, P + φ(P ))

Ensure: Q = kP

1: (k1, k2)← Decompose(k)

2: if k1 is even then

3: k1 ← k1 − 1

4: end if

5: ((xj , . . . , x0), (yj , . . . , y0))← GLV-SAC(k1, k2)

6: Q← (XPP [|yj |], sign(xj).YPP [|yj |])

7: j ← j − 1

8: while (j > 0) do

9: Q← 2Q

10: Q← Q+ (XPP [|yj |], sign(xj).YPP [|yj |])

11: end while

12: if k1 is even then

13: Q← Q+ (XPP [0], YPP [0])

14: end if

15: return Q

Algorithm 8 GLV-SAC(k1, k2)

Require: k1 = (k
(1)
`−1, . . . , k

(1)
0 ) and k2 =

(k
(2)
`−1, . . . , k

(2)
0 ) are `-bit positive integers. k1

is odd and ` = #E(Fp).
Ensure: Output (b

(1)
`−1, . . . , b

(1)
0 ) and (b

(2)
`−1, . . . , b

(2)
0 )

such that ∀i, b(1)i ∈ {−1, 1} and b
(2)
i ∈ {0, b

(1)
i }.

1: b
(1)
`−1 ← 1

2: for i = 0, . . . , `− 2 do

3: b
(1)
i ← 2k

(1)
i+1 − 1

4: b
(2)
i ← b

(1)
i .k

(2)
0

5: k2 ← bk2/2c − bb(2)i /2c
6: end for

7: b
(2)
`−1 ← k

(2)
0

8: return (b
(1)
`−1, . . . , b

(1)
0 ), (b

(2)
`−1, . . . , b

(2)
0 )

Algorithm 9 ZADDU(P , Q)

Require: P (X0, Y0, Z) and Q(X1, Y1, Z)

Ensure: Update X0, Y0, X1, Y1 and Z such that

(X0, Y0, Z) and (X1, Y1, Z) be the representatives

of P and P +Q.

1: A← X1 −X0

2: Z ← Z.A

3: A← A2

4: X0 ← X0.A

5: A← X1.A

6: Y1 ← Y1 − Y0
7: B ← Y 2

1

8: X1 ← B −X0 −A
9: A← A−X0

10: Y0 ← Y0.A

11: B ← X0 −X1

12: Y1 ← Y1.B − Y0

Algorithm 10 SafePerm(P , Q, bit bit)

Require: P (X0, Y0, Z), Q(X1, Y1, Z) and bit

Ensure: Permute safely P and Q if bit is equal to 0.

1: mask← (bit− 1)

2: X0 ← X0 ⊕ X1

3: X1 ← (mask &X0)⊕X1

4: X0 ← X0 ⊕ X1

5: Y0 ← Y0 ⊕ Y1
6: Y1 ← (mask &Y0) ⊕ Y1
7: Y0 ← Y0 ⊕ Y1
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Algorithm 11 PointFromEAC(EAC c)

Require: P (X,Y, 1) and Q = φ(P ) = (X ′, Y ′, 1)

Ensure: Update Q with the point computed from

(P, φ(P )) and the Euclidean addition chain c.

1: for i = 1 . . . length(c) do

2: SafePerm(P , Q, ci)

3: ZADDU(P , Q)

4: end for

5: ZADDU(P , Q)

6: return Q

Appendix C Anatomy of a modular

multiplication

Fig. 3: Anatomy of a C function computing a modu-

lar multiplication over 256-bit integers using Gnu MP

(obtained from gprof).

Modular Multiplication (256 bits)

gmpz mul
(17.45%)

gmpz mod
(81.37%)

Self 1.18%

Self (52.44%)

gmpn sqr (0.53%)

gmpn mul
(47.03%)

Self (8.39%)

gmpz tdiv r
(91.61%)

Self (51.97%)

gmpn mul n
(48.03%)

Self (13.91%)

gmpz tdiv qr
(86.09%)

Self (25.61%)

gmpn sbpi1 div qr
(74.39%)
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Fig. 4: Anatomy of a Java method computing a modular multiplication over 256-bit integers using Big Integer

Java library on an x64 platform (obtained from Netbeans profiler).

Modular Multiplication (256 bits)

BigInteger.multiply
(12.4%)

BigInteger.mod (85.1%)

Self 2.5%

Self (34.68%)

BigInteger.multiplyToLen (33.87%)

BigInteger.<init> (23.39%)

BigInteger.trustedStripLeadingZeroInts
(8.06%)

Self (2.12%)

BigInteger.remainder (97.88%)

Self (7.81%)

MutableBigInteger.<init> (3.48%)

MutableBigInteger.toBigInteger (11.88%)

MutableBigInteger.divide (76.83%)

Self (8.28%)

MutableBigInteger.clear (1.56%)

MutableBigInteger.compare (1.56%)

Arrays.copyOfRange (2.66%)

MutableBigInteger.divideMagnitude (85.94%)

Self (53.82%)

MutableBigInteger.mulsub (20%)

MutableBigInteger.unsignedLongCompare
(15.27%)

MutableBigInteger.divWord (4.91%)

MutableBigInteger.normalize (3.82%)

MutableBigInteger.<init> (2%)

Integer.numberOfLeadingZeros (0.18%)


